If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2+b^2=10^2
We move all terms to the left:
7^2+b^2-(10^2)=0
We add all the numbers together, and all the variables
b^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $
| -x-17=32 | | 4k2+12k+8=0 | | (8)/(2z)=(15)/(60) | | 2+5m+2m=-12 | | -6u^2+3u=0 | | a^2+2.6^2=3.9^2 | | 8n=(8)^2 | | a^2+8^2=9^2 | | 2^2+b^2=3^2 | | 2(x-3)^2=2(x^2+9) | | -16=-n/19 | | 3(x+6)=2(2x-6) | | t/3-4=21 | | 7x+12+8x+18=90 | | x+6.1=12.2 | | 8n=(6+2)^2 | | 5(2x}x=3 | | 3(-2x-6)+2(3x+5)-9x=11-5x+2(7-3x)-1 | | -1/8=g-42/5 | | 2xx=40 | | 8n=2(3+1)^2 | | 15=x-18;x= | | 7.6^2+b^2=9.2^2 | | 7n=27-6 | | 15=x-18;x | | 3(-2x-6)+2(3x+5)-9x=11-5x+3(7-3x)-1 | | a^2+5^2=9^2 | | 36x^2-60x=0 | | 2x+24=x+5 | | 12n=62 | | 2(-11x+7)=11x-19 | | 3n=40-10 |